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Purpose: To demonstrate accurate MR image reconstruction from undersampled
k-space data using cross-domain convolutional neural networks (CNNs)

Methods: Cross-domain CNNs consist of 3 components: (1) a deep CNN operating
on the k-space (KCNN), (2) a deep CNN operating on an image domain (ICNN), and
(3) an interleaved data consistency operations. These components are alternately
applied, and each CNN is trained to minimize the loss between the reconstructed and
corresponding fully sampled k-spaces. The final reconstructed image is obtained by
forward-propagating the undersampled k-space data through the entire network.

Results: Performances of K-net (KCNN with inverse Fourier transform), I-net
(ICNN with interleaved data consistency), and various combinations of the 2 different
networks were tested. The test results indicated that K-net and I-net have different
advantages/disadvantages in terms of tissue-structure restoration. Consequently, the
combination of K-net and I-net is superior to single-domain CNNs. Three MR data
sets, the T2 fluid-attenuated inversion recovery (T2 FLAIR) set from the Alzheimer’s
Disease Neuroimaging Initiative and 2 data sets acquired at our local institute (T2
FLAIR and T1 weighted), were used to evaluate the performance of 7 conventional
reconstruction algorithms and the proposed cross-domain CNNs, which hereafter is
referred to as KIKI-net. KIKI-net outperforms conventional algorithms with mean
improvements of 2.29 dB in peak SNR and 0.031 in structure similarity.

Conclusion: KIKI-net exhibits superior performance over state-of-the-art conven-
tional algorithms in terms of restoring tissue structures and removing aliasing
artifacts. The results demonstrate that KIKI-net is applicable up to a reduction factor
of 3 to 4 based on variable-density Cartesian undersampling.
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1 | INTRODUCTION

Magnetic resonance imaging (MRI) is a noninvasive medical
imaging technique that provides various contrast mechanisms

for visualizing anatomical structures and physiological functions.
However, MRI is relatively slow because of its long acquisition
time, and therefore is used infrequently for applications that
require fast scanning. The long MRI acquisition time is the
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result of not being able to simultaneously sample multiple data
points; instead, the data should be sequentially sampled in time
(i.e., point by point) over the images’ Fourier space, referred to
as the “k-space.” Despite the development of advanced hard-
ware and imaging techniques, such as parallel imaging1,2 and
echo planar imaging,3 the maximum for magnetic resonance
(MR) data collection remains limited. Instead of acquiring the
fully sampled MR data in the k-space, the k-space data can be
subsampled at a frequency that is lower than the Nyquist rate
(i.e., it can be undersampled) to accelerate the acquisition pro-
cess. However, simple undersampling schemes result in aliasing
artifacts in the reconstructed images, and many tissue structures
in images are obscured by these artifacts. Therefore, various
efforts have focused on developing advanced reconstruction
algorithms to improve the image quality of the undersampled
MR images. One of the most representative algorithms is com-
pressed sensing (CS), which uses sparsity in specific transform
domains.4-8 As more advanced algorithms, CS algorithms have
been combined with parallel imaging9-11 and low-rank con-
straint terms.12,13 More recently, image-adaptive algorithms that
enforce sparsity on image patches, such as dictionary-learning
algorithms,14-18 have appeared.

Compressed-sensing MRI (CS-MRI) uses sparse coeffi-
cients in global sparsifying transforms, such as wavelets,
curvelets, and contourlets transform4-8; however, in the l1
minimization process, the sparse coefficient values tend to be
significantly smaller than those of the original coefficient
values. This value reduction hides detailed structures and
results in blur artifacts in the reconstructed images. Further-
more, high-frequency oscillatory artifacts remain in the
reconstructed image when large errors occurring in the trans-
form domain are not properly reduced via minimization.14

Therefore, CS with global sparsifying transforms is generally
limited to a reduction factor of 2.5 to 3 for typical MR
images.14 Dictionary learning MRI (DL-MRI) updates adapt-
ive dictionaries by alternating back and forth between an
image domain and the k-space.14 This image-adaptive sparsi-
fying algorithm can represent better sparsification of images
compared with CS-MRI, owing to dictionaries that are
learned from the image itself or images from similar classes.
Therefore, DL-MRI achieves better results than nonadaptive
CS algorithms. However, detailed information of images
may disappear if the number of dictionary patches is not suf-
ficiently large or if the reduction factor is too high to gener-
ate dictionaries that do not induce blurring.

Meanwhile, several recent studies have demonstrated the
applicability of deep-learning techniques to the reconstruc-
tion of undersampled MR images19-21 or CT images.22 In
training, tuples of undersampled images and fully sampled
images are fed to convolutional neural networks (CNNs) to
learn the relationship between the undersampled images and
the corresponding fully sampled images.19,22 In testing, arbi-
trary undersampled images obtained with the same protocols

are fed to the well-trained CNNs, and the final reconstructed
images are obtained as outputs of the CNNs. These studies
can be interpreted as attempts to replace 3 main steps of the
conventional reconstruction algorithms: (1) selection of
image characteristics that are assumed by humans (e.g., spar-
sity), (2) extraction of features that represent the image char-
acteristics (e.g., wavelet coefficients), and (3) optimization of
features (e.g., l1 minimization). These 3 steps are then
replaced with (1) data-driven feature extraction (i.e., deep
neural networks such as CNNs) and (2) a unified optimiza-
tion method (i.e., loss backpropagation).

Existing CNN-based algorithms outperform conventional
CS algorithms because of their data-driven feature extraction
and high-nonlinearity properties.19-22 However, the existing
algorithms contain 2 major limitations. First, the CNNs used in
previous studies are only trained on the image domain (i.e., the
CNNs estimate true images from images in which the detailed
structures are already distorted or have even disappeared).19-22

To resolve the problem, we developed a deep CNN that oper-
ates on the k-space and can use the maximum possible extent
of the k-space itself, which contains the true high-frequency
components of the images in its outer area (although some
high-frequency components may be missing). Furthermore, an
iterative deep-learning approach is introduced. We iteratively
(or alternately) applied 2 different CNNs operating on different
domains (the k-space and image domain), and data consistency
was interleaved among the CNNs. The second limitation of the
earlier studies is that the network depth was shallower (3 to 5
layers) than that of most networks used in recent image-
restoration studies.19-22 In some studies, deep CNNs with layer
depths greater than 20 afford much more promising results
than shallower networks because of their larger receptive
fields.23,24 In the present study, we exploited CNNs with layer
depths greater than or equal to 20 and compared their results
with those of shallower networks (e.g., 3 layers).

This study proposes a new algorithm that can estimate
fully sampled MR data from undersampled MR data using a
combination of 4 different CNNs, and is hereafter referred
to as the KIKI-net (the network architecture operating on
k-space, image, k-space, and image sequentially). We desig-
nate this type of network architecture as cross-domain CNNs
(CD-CNNs). The proposed KIKI-net can use true sampled
points in the k-space to the maximum extent possible, which
is highly effective in restoring detailed tissue structures in
images as well as in reducing aliasing artifacts.

2 | METHODS

All experiments conducted in the present study were
approved by the institutional review board. Written informed
consent was obtained from all human subjects.
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This section provides the problem formulation, net-
work component details, practical implementation of CD-
CNNs, and experiment framework. The network architec-
ture is based on deep CNNs that have been proven to
learn pixel-to-pixel regression in the area of computer
vision.25-32 The CD-CNNs consist of 3 components: a
deep CNN for k-space completion (KCNN), a deep CNN
for image restoration (ICNN), and an interleaved data con-
sistency (IDC).

2.1 | Problem formulation

Let k 2 Cnkx3nky denote a 2D complex-valued MR k-space.
Our purpose is to reconstruct a fully sampled image x from
the undersampled k-space, ku, obtained as follows:

ku5U�k5U�F 2DðxÞ5ku;r1iku;i (1)

xu5F21
2D ðkuÞ5xu;r1ixu;i (2)

where ku 2 Cnkx3nky denotes the undersampled k-space;
U 2 Rnkx3nky denotes the binary undersampling mask; �

denotes element-wise multiplication; F 2D and F21
2D denote the

2D Fourier transform (FT) and inverse Fourier transform
(IFT), respectively; ku;r 2 Rnkx3nky and ku;i 2 Rnkx3nky denote
the real and imaginary channels of ku, respectively; xu denotes
the undersampled image; and xu;r and xu;i denote the real and
imaginary channels of xu, respectively. To solve the ill-posed
problem of reconstructing x from a small number of samples
in the k-space, ku, we introduce 2 minimization equations: 1
for k-space completion, and the other for image restoration.

k-space completion: argminbk kk2bkk22
5 argmin

hk
kk2Hkðku; hkÞk22 (3)

where bk is the estimation of the true k-space, k. In terms of a
learning algorithm, bk is estimated by a hypothesis function,
Hk, with the input of ku and the unknown parameters hk.
Therefore, the minimization equation changes to find optimal
hk as shown in the right side of Equation 3.

image restoration: argminbx kx2bxk221kkku2U�F 2DðbxÞk22

5 argmin
hx

kx2Hxðxu; hxÞk221kkku2U�F 2D

�
Hxðxu; hxÞ

�
k22
(4)

where bx is the estimation of the true image, x; and Hx is the
hypothesis function to estimate bx with the input of xu and the
unknown parameters hx. The right term of Equation 4 is a reg-
ularization term for data consistency, and k is the regularization
parameter. Then, a combination form of Equations 3 and 4,
which is the target objective function of this study, is

argmin
hk;hx

���x2Hx

�
F21

2D

�
Hkðku; hkÞ

�
; hx

����2
2

1k
���ku2U�F 2D

�
Hx

�
F21

2D

�
Hkðku; hkÞ

�
; hx

�����2
2

(5)

We have determined that simultaneously obtaining hk
and hx by solving Equation 5 is highly constrained in terms
of network design due to high computational complexities,
overfitting problems, and memory shortages. Therefore, we
introduced an iterative deep-learning approach that obtains
hk and hx by alternately solving Equations 3 and 4 until the
final loss is saturated. The detailed process of our approach
is presented in the following sections.

2.2 | Deep CNN for k-space completion

To solve the minimization equation in Equation 3, we intro-
duced a deep CNN as the hypothesis function Hk, which
completes unacquired points in the k-space using acquired
points in the k-space. This CNN is denoted as KCNN. Equa-
tion 3 can then be rewritten as

argmin
hk

kk2Hkðkin; hkÞk225argmin
hKCNN

kk2HKCNNðkin; hKCNNÞk22
(6)

where HKCNN is the CNN-based hypothesis function; hKCNN

represents the parameters of the CNN; kin is the input k-space,
which is ku for the first KCNN. The network architecture of
KCNN is presented in Figure 1A, and the forward-pass equa-
tions of KCNN, namely HKCNNðkin; hKCNNÞ, are as follows.

The KCNN component consists of 3 network compo-
nents: a feature-extraction net, an inference net, and a recon-
struction net. In the feature-extraction net, features of the
undersampled k-space data are extracted by a pair of convo-
lution and activation layers. Feature maps are independently
extracted from the real and imaginary k-spaces and are then
concatenated. The forward-pass equation of the feature
extraction net is

Fr5rðWF;r � kin;r1bF;rÞ (7)

Fi5rðWF;i � kin;i1bF;iÞ (8)

F5½Fr;Fi� (9)

where kin;r and kin;i denote the real and imaginary channels
of kin and WF;r 2 Rw3h313c, and WF;i 2 Rw3h313c denote
the weight matrices of the 2 corresponding convolution
layers of the feature extraction net. For the weight matrices,
1, w, h, and c respectively denote the number of channels
and the width, height, and number of weight matrices. Val-
ues of bF;r 2 Rc and bF;i 2 Rc denote the bias matrices; Fr

2 Rnkx3nky3c and Fi 2 Rnkx3nky3c denote the feature maps
extracted from the real and imaginary channels of the k-
space, respectively; and r denotes activation function. The 2
feature maps, Fr and Fi, are concatenated along the channel
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axis to form F 2 Rnkx3nky3ð2cÞ such that they are fed into the
next net.

The inference net infers and fills the empty points of the
feature maps. These are gradually filled while the feature
maps pass through multiple convolution and activation
layers. The forward-pass equation of the inference net is

I15rðWI1 � F1bI1Þ (10)

In5rðWIn � In211bInÞ (11)

where n52; . . . ; Nl 2 1; Nl; and Nl is the depth of layers.
Values of WI1 2 Rw3h3ð2cÞ3c and WIn 2 Rw3h3c3c denote
the first and nth convolution matrices of the inference net,
respectively; and bI1 2 Rc and bIn 2 Rc are the first and the
nth bias values of the inference net, respectively. The final,
fully filled feature maps are obtained through Nl different
convolution and activation layers.

The reconstruction net receives the fully filled feature
maps, INl 2 Rnkx3nky3c, as input and forms the final net-
work output with respect to the completed k-space. The
following are the forward-pass equations for the recon-
struction net:

bkr5WR;r � INl1bR;r (12)

bki5WR;i � INl1bR;i (13)

HKCNNðkin; hKCNNÞ5bkKCNN5 bkr1ibki (14)

where hKCNN5fðWF;r; bF;rÞ; ðWF;i; bF;iÞ; ðWI1 ; bI1Þ; . . . ;

ðWIN ; bINÞ; ðWR;r; bR;rÞ; ðWR;i; bR;iÞg. The completed real
and imaginary k-spaces, namely bkr and bki , are recon-
structed by a 13 1 convolution (WR;r, bR;r, WR;i, and
bR;i) layer from the output of the inference net, IN. The
output of KCNN, HKCNNðkin; hKCNNÞ5bkKCNN, is obtained
by combining the 2 k-space channels.

2.3 | Deep CNN for image restoration

Restoration of degraded structures and removal of remaining
artifacts in the KCNN-reconstructed image involve construct-
ing another deep CNN operating on the image domain. The
ICNN is adapted from conventional deep CNNs that were
developed for image restoration, including super-resolu-
tion23,24,33 and compression-artifact removal.28,34 The role of
ICNN is solving the left term of Equation 4, which can be
rewritten as

argmin
hx

kx2Hxðxin; hxÞk225 argmin
hICNN

kx2HICNNðxin; hICNNÞk22
(15)

where xin is the input image to be restored; hICNN is the
ICNN parameters; and HICNN is the CNN-based hypothesis
function. The ICNN network architecture, which corresponds
to HICNN of Equation 15, is presented in Figure 1B. Particu-
larly, the ICNN consists of network components similar to
those in KCNN (feature extraction, inference, and

FIGURE 1 Network architecture of the deep convolutional neural network (CNN) for k-space completion (KCNN) (A) and the deep CNN for image
restoration (ICNN) (B)
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reconstruction nets). Because MR images are complex-
valued, we divided the input image, xin, into real and imagi-
nary channels (xin;r and xin;i, respectively) as in the KCNN.
In the ICNN, a skip-connection layer is added to the recon-
struction net.23,24 The forward-pass equations for HICNN are
as follows:

Fr5rðWF;r � xin;r1bF;rÞ (16)

Fi5rðWF;i � xin;i1bF;iÞ (17)

F5½Fr;Fi� (18)

I15rðWI1 � F1bI1Þ (19)

In5rðWIn � In211bInÞ (20)

cRr5WR;r � INl1bR;r (21)

bRi5WR;i � INl1bR;i (22)

bR5cRr1i bRi (23)

HICNNðxin; hICNNÞ5bxICNN5xin1bR (24)

where n52; . . . ; Nl 2 1; Nl denotes the order of the
layers; bR denotes the reconstructed residual image; bx denotes
the final output image; and hICNN of Equation 24 denotes
the CNN parameters fðWF; bFÞ; ðWI1 ; bI1Þ; . . . ; ðWINl ; bINlÞ;
ðWR; bRÞg. The other variables represent the same network
elements as those in the KCNN. The inference net infers the
feature maps in which detailed features are restored, and arti-
facts are reduced by applying Nl convolution/activation layers
to the extracted feature maps, F 2 Rnx3ny3c. The reconstruc-
tion net predicts the residual image, R5x2xin, through a sin-
gle convolution layer and forms the final reconstructed image,
bxICNN, as in Equation 24. The ICNN uses the skip connection
only to learn the sparse residual image, which results in faster
and more effective training.23,24

2.4 | Interleaved data consistency

The originally sampled k-space data can change while
passing through ICNN, because ICNN optimizes only the
left term of Equation 4. To ensure data consistency,
which is the right term of Equation 4, we have to opti-
mize Equation 4 with fixed HICNN and hICNN, which are
obtained using ICNN. Then, the closed-form solution of
Equation 4 is14

ckDðkx; kyÞ5
bkICNNðkx; kyÞ1kkuðkx; kyÞ

11k
if Uðkx; kyÞ51

bkICNNðkx; kyÞ if Uðkx; kyÞ50

8><
>:

(25)

where bkICNN5F 2DðbxICNNÞ, which is the FT of the
ICNN output; ckD denotes the reconstructed k-space with
data consistency; and kx and ky denote k-space indices.
The final output of IDC is cxD5F21

2D ðckDÞ.

2.5 | Cross-domain CNNs

The 3 different network components defined previously
(namely, KCNN and ICNN with IDC), which solve Equa-
tions 3 and 4, are iteratively applied to solve Equation 5.
We named this iterative deep-learning approach as CD-
CNN. The data flow and intermediate operations of the one
block of CD-CNNs at the ith iteration are illustrated in Fig-
ure 2. As depicted in Figure 2, the one block of CD-CNNs
consists of 2 parts: K-net (the combination of KCNN and
IFT) and I-net (the combination of ICNN and IDC). The
input k-space data at ith iteration, kiin, passes through a net-
work operating on the k-space (i.e., KCNN). The value of
k1in, the first input data, is ku, which is the undersampled k-
space data; and kiin with i larger than 2 is the output at the
previous (i.e., i21) iteration. The output of KCNN, bki

KCNN,
is inverse Fourier transformed to obtain bxiKCNN. We desig-
nate this KCNN1FT operation, which gives the first output
image, as K-net. Then, bxiKCNN is fed to the next network,
ICNN, which yields bxiICNN. At the final step of the iteration,bxiICNN is fed to IDC to yield bxiD, which is the ith iteration
output of the CD-CNNs. The ICNN1IDC operation, which
gives the second output image, is designated as I-net. The
one-block CD-CNN procedure is iterated until the loss
between the fully sampled image x and the final output
image bxiD is saturated.

Training was performed with an incremental manner
rather than an end-to-end manner. The KIKI-net consists
of CNNs of which layer depth is more than 100 and the
interleaved operations among CNNs, FT, and IDC. There-
fore, training the KIKI-net with an end-to-end manner is
likely to involve problems of nonlocal minimum or over-
fitting and memory shortages because of the large number
of the parameters to be learned (more than 3.5 million in
the networks we used). To separately train each CNN
while not involving operations of FT and IDC in training,
only one last network (i.e., KCNN or ICNN) was trained
while previously trained networks were fixed. For exam-
ple, when training the one block of KIKI-net (i.e., KI-
net), KCNN was trained first and the ICNN was trained
after the KCNN training. More specifically, to train the
first KCNN, all undersampled k-space data and their cor-
responding fully sampled k-space data were fed to KCNN
as inputs and outputs. To train the next ICNN, IFTs of
these KCNN outputs, which are the K-net outputs, and

FIGURE 2 Block diagram for data flow and intermediate operations
of cross-domain CNNs (CD-CNNs)
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their corresponding fully sampled images were fed to
ICNN as inputs and outputs, respectively. The next block
receives the outputs of the previous block (i.e., KI-net) as
inputs, and was trained in the same manner as the previ-
ous block.

More details for training, including loss function and
optimizer, as well as network specifications, including net-
work depths, filter sizes, activation function for CNNs,
parameters of stochastic gradient descent optimizer, deep-
learning libraries, and training/testing times, are provided in
the supporting information.

2.6 | Experimental framework

Three different MR data sets were used: T2 fluid-attenuated
inversion recovery (T2-FLAIR) brain real-valued data set
provided by the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) 35 and 2 complex-valued data sets, T2-FLAIR
and T1-weighted data set, which were acquired at our local
institute. Details of data acquisition, including scanner
information, sequence parameters, and the number of slices
used for training/testing, are provided in the supporting
information.

Undersampled k-space data were retrospectively obtained
by subsampling the fully sampled k-space data. Before
undersampling, all MR images were normalized to a maxi-
mum magnitude of 1. A Cartesian random undersampling
scheme in a phase-encoding (i.e., anterior–posterior) direc-
tion was used for undersampled k-space data-set generation.
Reduction factors were 2, 3, and 4. The binary undersam-
pling masks are presented in Supporting Information Figure
S1. Fully sampled images were used as label data during the
training.

The proposed KIKI-net’s reconstruction performance
was compared with the following 7 conventional algorithms:
baseline zero-filling, CS-MRI,4 DL-MRI,14 block-matching
and 3D filtering (BM3D) MRI,36 a CNN-based algorithm by
Wang et al19 (denoted as Wang’s algorithm), PANO (patch-
based nonlocal operator),18 and FDLCP (fast dictionary
learning method on classified patches).16 The detailed param-
eters of the conventional algorithms are provided in the sup-
porting information.

The reconstructed images were evaluated using 2 numeri-
cal metrics: peak SNR (PSNR) and structure similarity
(SSIM).37 Particularly, PSNR was calculated as the ratio in
decibels (dB) of the peak intensity value of the reference
image to the RMS error between the reconstructed and refer-
ence images. The SSIM, an image quality metric, was used
to evaluate structure similarity and detailed features in the 2
images. The SSIM is known to be better correlated with the
perception of the human visual system than PSNR.37 The
patch size used to calculate SSIM was 11.

3 | RESULTS

3.1 | K-net versus I-net

To evaluate the efficacy of each network component, we
compared the results from K-net and I-net. Figure 3 depicts
RMS error versus the number of epochs for 4 different net-
works with the same network capacity (i.e., K-net, K-net
with IDC, I-net without IDC, and I-net). During training,
both K-net and I-net stably converged before 180 epochs in
terms of RMS error. The RMS error values of K-net and K-
net with IDC were exactly the same, indicating that K-net
performs its own data consistency. In comparison with single
networks, I-net showed a performance superior to K-net.
Moreover, the combination of IDC into ICNN resulted in
greater improvements. However, Figure 4 shows that I-net
was not always superior to K-net in all image areas. Figure 4
depicts the true fully sampled image (A), zero-filling image
(B), and the images reconstructed with K-net (C), K-net with
IDC (D), I-net without IDC (E), and I-net at R5 4 (F). Fig-
ure 4G-L and Figure 4M-R are the magnified images of solid
and dotted boxes, respectively, found in Figure 4A-F. As
shown in Figure 4C,D, K-net and K-net with IDC result in
the same performance. In Figure 4I,J, K-nets successfully
removed the oscillatory artifacts owing to undersampling, as
indicated in Figure 4H. They also faintly restored the real
structures in Figure 4G as depicted by the dotted circles in
Figure 4I,J. Contrarily, the I-nets failed to remove the arti-
facts, and furthermore sharpened them as depicted by dotted
circles in Figure 4K,L. Moreover, the recovered shapes from
K-net depicted by dotted circles in Figure 4I,J are not
observed in Figure 4K,L. In contrast, another result from I-
net, the dotted circles in Figure 4Q,R indicate that I-nets are
capable of restoring structures that could not be restored by
K-net as shown in Figure 4O,P. In addition, I-nets were
superior to K-nets in restoring detailed structures, because

FIGURE 3 Root mean square error (RMSE) versus of epochs for
K-net without interleaved data consistency (IDC), K-net with IDC, I-net
without IDC, and I-net during training

6 | Magnetic Resonance in Medicine
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of their structure-sharpening characteristics. These results
indicate that K-net and I-net have different advantages/
disadvantages in terms of tissue-structure restoration.

3.2 | Single-domain CNNs versus CD-CNNs

To evaluate the efficacy of CD-CNNs, which are a combina-
tion of K-net and I-net, the CD-CNN’s performance was
compared with that of iterative CNNs operating on only a
single domain. This kind of CNN was designated as single-
domain CNNs (SD-CNNs). We compared the results of 2
SD-CNNs (IIII-net and KKKK-net) and 2 CD-CNNs (IKIK-
net and KIKI-net) under the same conditions of the number
of CNN iterations and network capacity. Figure 5 depicts the
fully sampled image (A), the magnified fully sampled image
(B), and the magnified images reconstructed with zero-filling

(C), IIII-net (D), KKKK-net (E), IKIK-net (F), and KIKI-net
(G) at R5 4 for the boxed region of interest in Figure 5A.
For the first example images, the CD-CNN images (Figure
5F1,G1) depict better reconstructions than the SD-CNN
images (Figure 5D1,E1) in terms of restoring detailed tissues
as shown in the ellipsoids in Figure 5D1-G1. IKIK-net and
KIKI-net showed similar performances. In the case of the
second example images, the IIII-net image depicts that high-
frequency aliasing artifacts in Figure 5C2 are accentuated as
a realistic structure, as shown in the circle in Figure 5D2. In
contrast, the 2 CD-CNNs well removed the aliasing artifacts
while not shaping the artifacts that look like realistic struc-
tures, as shown in Figure 5F2,G2.

The quantitative evaluations of the different I-net and K-
net combinations (IIII-net, KKKK-net, IKIK-net, and KIKI-
net) are listed in Table 1, which depicts the average PSNR/

FIGURE 4 Reconstruction results of K-net and I-net atR5 4 undersampling: true fully sampled image (A); zero-filling image (B); and images recon-
structed with K-net (C), K-net with IDC (D), I-net without IDC (E), and I-net (F). G-L,M-R,Magnified images of solid boxes and dotted boxes in (A) to
(F), respectively

FIGURE 5 Reconstruction results from single-domain CNNs (SD-CNNs) and CD-CNNs atR5 4 undersampling: fully sampled image (A); magni-
fied image of (A) of boxed region of interest (B); zero-filling image (C); and the image reconstructed with IIII-net (D), KKKK-net (E), IKIK-net (F), and
KIKI-net (G)
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SSIMs of test images reconstructed with the 4 CNN combi-
nations at R5 3. For the first network, I-net had a better per-
formance than K-net. For the second network, the 2 CD-
CNNs (KI-net and IK-net) exhibited a better performance
than II-net and KK-net. For the third and fourth networks,
the CD-CNNs consistently showed better performance than
the other combinations that consisted of SD-CNNs (i.e., III-
net, KKK-net, IIII-net, and KKKK-net). Therefore, CD-
CNNs were more effective than SD-CNNs. The KIKI-net
resulted in a slightly better performance than IKIK-net; how-
ever, the differences were not significant. The KIKI-net
showed minor improvements compared with KI-net (1.71 dB
in PSNR, 0.0065 in SSIM). Although the results were not
presented in this study, no significant improvement was
observed in the iteration after KIKI-net (e.g., KIKIK,
KIKIKI). Therefore, we fixed the iteration of CD-CNNs as 2
(KI-net is 1 iteration of CD-CNNs).

3.3 | Comparison with conventional
algorithms

Qualitative and quantitative comparisons are provided for
the conventional algorithms and the proposed KIKI-net.
Figure 6 depicts the resultant images from the ADNI data
set (T2-FLAIR_ADNI). In this figure, the true and recon-
structed images (A1) with zero-filling (B1), CS-MRI (C1),
DL-MRI (D1), BM3D-MRI (E1), Wang’s algorithm (F1),
PANO (G1), FDLCP (H1), and KIKI-net (I1) are shown.
Figure 6A2-I2 and Figure 6A3-I3 are magnified images of
the solid and dotted-boxed regions of interest in Figure
6A1-I1, respectively. The undersampling factor was 4. In
the CS-MRI images (Figure 6C1), oscillatory undersam-
pling artifacts noted in the zero-filling image in (Figure
6B1) still remained because of high acceleration, whereas
the artifacts were sufficiently removed at R5 2, 3, which
are depicted in Supporting Information Figure S6. More-
over, as depicted by the magnified image in Figure 6C2,C3,
the algorithm failed to restore details observed in the fully
sampled images. The DL-MRI, BM3D-MRI, and Wang’s
algorithm successfully reduced the undersampling artifacts
despite the high reduction factor; however, some artifacts

are still observed in Figure 6D1-F1, and they failed to
restore the details depicted in Figure 6D2-F2 and Figure
6D3-F3. Two state-of-the-art algorithms, PANO (Figure
6G1) and FDLCP (Figure 6H1), removed most of the alias-
ing artifacts, and were outstanding in restoring details.
However, some details were not fully recovered as shown
in the ellipsoids in Figure 6G2,H2,G3,H3. In contrast,
KIKI-net successfully restored those details as shown in the
ellipsoids in Figure 6I2,I3.

Figures 7 and 8 depict the true and reconstructed images
(A) with zero-filling (B), CS-MRI (C), DL-MRI (D), Wang’s
algorithm (E), PANO (F), FDLCP (G), and KIKI-net (H) for
the 2 sets of complex-valued k-space data acquired at our
local institute (T2-FLAIR_ours for Figure 7 and T1-weighte-
d_ours for Figure 8). Figure 7I-P shows magnified images of
the boxed regions of interest in Figure 7A-H, and Figure 7Q-W
shows the error maps of Figure 7I-P. The undersampling
factors were 3 and 4 for T2-FLAIR_ours and T1-weighte-
d_ours, respectively. Because the BM3D-MRI algorithm
does not support complex-valued data,21 the results for this
algorithm are not included in these figures. As depicted in
these Figures, KIKI-net outperforms the other algorithms for
the complex-valued data sets, which shows similar aspects
to the results in Figure 6. In Figure 7P, KIKI-net shows bet-
ter performance than the other algorithms (Figure 7J-O) in
improving conspicuity of thin vessels and boundaries
between gray and white matter. Figure 8P shows how KIKI-
net can restore details that were severely blurred and dis-
torted in the highly undersampled image (Figure 8J) and not
be fully restored in the images reconstructed with other algo-
rithms (Figure 8K-O). However, even though KIKI-net best
restored the details as close to the fully sampled image as
possible compared with the others, some of detailed struc-
tures such as vessels were still blurred and distorted in the
shape, as shown in the center of Figure 8P, because of the
high undersampling factor, which appears to be a limit of
our algorithm at R � 4 in Cartesian undersampling for the
complex-valued data. In the case of the other reduction fac-
tors, results for the 3 data sets are provided in Supporting
Information Figures S6, S7, and S8. Reconstructed phase
images from different reconstruction methods for the 2

TABLE 1 Average peak SNR/structure similarities of different combinations of networks on T2-FLAIR_ADNI data sets undersampled at R5 3

Order of nets First net PSNR/SSIM Second net PSNR/SSIM Third net PSNR/SSIM Fourth net PSNR/SSIM

I-, I-, I-, I- 37.10/0.9716 38.12/0.9766 38.41/0.9782 38.43/0.9791

K-, K-, K-, K- 34.19/0.9636 34.84/0.9688 35.46/0.9688 35.46/0.9688

I-, K-, I-, K- 37.10/0.9716 38.98/0.9771 39.59/0.9809 39.58/0.9810

K-, I-, K-, I- 34.19/0.9636 38.64/0.9768 40.30/0.9821 40.35/0.9833

Note: PSNR, peak SNR; SSIM, structure similarity.
The highest PSNR and SSIM values are bold faced.
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complex-valued data sets are also provided in Supporting
Information Figures S9 and S10.

The quantitative evaluations are summarized in Table
2 along with the average PSNR/SSIM values at R5 2, 3,
and 4 on the 3 data sets (T2-FLAIR_ADNI, T2-FLAIR_-
ours, and T1-weighted_ours). Among the 7 conventional
algorithms, PANO and FDLCP exhibited high PSNRs
and SSIMs for the 3 data sets. The PANO algorithm
exhibited the highest PSNR for T2-FLAIR_ADNI and
T1_weighted_ours data sets at R5 2, and the highest
SSIM for the T1_weighted_ours data set at R5 2, which
are slightly better results than KIKI-net (0.34 dB in
PSNR and 0.0045 in SSIM). Except for these 2 cases,
our proposed algorithm, KIKI-net, exhibited the highest
values with mean improvements of 2.29 dB in PSNR and
0.031 in SSIM compared with the highest values of the
other algorithms.

4 | DISCUSSION

The current study presents a novel CD-CNN, referred to as
KIKI-net for reconstructing undersampled MR images. The
KIKI-net consists of the following 3 components: KCNN
for k-space completion, ICNN for removing artifacts and
restoring image details, and IDC for regularizing and acti-
vating network learning. Additionally, to iteratively per-
form each optimization, each network is alternately applied
and independently trained. Experimental results with vari-
ous reduction factors and 3 different data sets demonstrated
that KIKI-net outperforms conventional reconstruction
algorithms including CS-MRI, DL-MRI, BM3D-MRI, a
CNN-based algorithm that operates only on the image
domain, PANO, and FDLCP. KIKI-net is outstanding in
terms of restoring detailed tissue structures that would dis-
appear in other algorithms as well as in simultaneously
removing aliasing artifacts.

To effectively solve the 2 minimization equations for k-
space completion and image restoration (Equations 3 and 4),
K-net (KCNN with IFT) and I-net (ICNN with IDC) were
alternately applied such that each term was iteratively mini-
mized. The number of layers linearly increases in CD-CNNs
with the number CD-CNN iterations. For example, the KIKI-
net used in this study, which combines 4 25-layer CNNs,
corresponds to a CNN that consists of 100 layers (25
layers3 4); however, if this extremely deep KIKI-net is
trained in an end-to-end manner, there are several factors that
degrade the training performance, such as the difficulty of
hyperparameter tuning,38-40 the vanishing gradient prob-
lem41,42 due to a larger number of parameters, and graphic
processing unit memory shortage. Furthermore, FT and IFT
must be included in the networks, which increases the com-
putational complexity of the network and worsen these

FIGURE 6 Reconstruction results from conventional algorithms and
KIKI-net atR5 4 undersampling for the T2 fluid-attenuated inversion recov-
ery Alzheimer’s DiseaseNeuroimaging Initiative data set (T2-FLAIR_-
ADNI): fully sampled image (A1); zero-filling image (B1); image
reconstructedwith compressed-sensingMRI (CS-MRI) (C1); image recon-
structedwith dictionary learning (DL)MRI (D1); image reconstructedwith
block-matching and 3D filtering (BM3D)MRI (E1); image reconstructed
withWang’s algorithm (F1); image reconstructedwith PANO (patch-based
nonlocal operator) (G1); image reconstructedwith FDLCP (fast dictionary
learningmethod on classified patches) (H1); and image reconstructedwith
our proposed algorithm,KIKI-net (I1). A2-I2, A3-I3,Magnified images for
the solid boxes and dotted boxes in (A1) to (I1), respectively
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problems. To overcome these issues, we trained each 25-
layer network independently. The FT used in IDC was not
performed during training but was used only to convert net-
work outputs to the next network inputs.

We found that K-net and I-net are different in their
tissue-structure restoring roles. K-net is effective in restor-
ing structures that have disappeared because of undersam-
pling and removing high-frequency oscillatory artifacts.
However, K-net shows low performance in improving the
clarity of detailed tissues. I-net is effective in improving
the structure sharpness and clarity. However, it can make
the artifacts sharp; and to more realistic structures, it mis-
takes the oscillatory artifacts on images as real structures.

When the 2 networks are combined, the disadvantages of
the individual networks are effectively complemented. The
deeper network depth of the proposed (25-layer3 4) CD-
CNNs than that of existing CNN-based reconstruction algo-
rithms was also an important factor that improves the
reconstruction performance. In our experiments on network
depths and the number of filters of each layer, performance
continued to improve until the network capacity reached
the current CD-CNN capacity (Supporting Information Fig-
ures S4 and S5).

Although KIKI-net performed well in the 3 data sets
presented in this study, there was a large performance drop
in results for data sets at our local institute compared with

FIGURE 7 Reconstruction results from conventional algorithms and KIKI-net atR5 3 undersampling for the T1-weighted_ours data set: fully
sampled image (A); zero-filling image (B); image reconstructed with CS-MRI (C); image reconstructed with DL-MRI (D); image reconstructed with
Wang’s algorithm (E); image reconstructed with PANO (F); image reconstructed with FDLCP (G); and image reconstructed with our proposed algorithm,
KIKI-net (H). I-P,Magnified images for the dotted boxes in (A) to (H), respectively. Q-W, Error maps of (I) to (P)

FIGURE 8 Reconstruction results from conventional algorithms andKIKI-net atR5 4 undersampling for the T2-FLAIR_ours data set: fully sampled
image (A); zero-filling image (B); image reconstructed with CS-MRI (C); image reconstructed with DL-MRI (D); image reconstructed withWang’s algo-
rithm (E); image reconstructed with PANO (F); image reconstructed with FDLCP (G); and image reconstructed with our proposed algorithm, KIKI-net
(H). I-P,Magnified images for the dotted boxes in (A) to (H), respectively. Q-W, Error maps of (I) to (P)
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the results for the ADNI data set. The similar performance
drops were also observed for the conventional algorithms.
The performance drops appeared to be caused by relatively
high noise levels of the data sets at our local institute. The
CNNs could not learn to predict the true noiseless images,
because the label data for training were also noisy. In our
additional experiments on different noise levels for the
ADNI data set (Supporting Information Figures S2 and
S3), it was observed that as the noise level increased, the
output images became more blurred in order to reduce the
errors caused by random noise, not undersampling. Conse-
quently, the blurring resulted in the performance drop
(lower PSNR).

Future experiments are required to extend KIKI-net
applicability. The present study focused on variable-density
Cartesian trajectory MR acquisition; however, a similar con-
cept of completing k-space with K-net and I-net can also be
applied with appropriate modifications of KIKI-net with
respect to non-Cartesian acquisition, including radial-
trajectory and spiral-trajectory acquisition. Moreover, to

achieve higher acceleration, KIKI-net can be combined with
parallel imaging by an appropriate modification of KIKI-net,
such that it can fully use multicoil data acquired with
undersampling.
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TABLE 2 Quantitative results of conventional algorithms and KIKI-net; average peak SNR/structural similarities for R5 2, 3, and 4 on the 3
data sets

R Algorithm

Data set

T2-FLAIR_ADNI
PSNR/SSIM

T1-weighted_ours
PSNR/SSIM

T2-FLAIR_ours
PSNR/SSIM

2 Zero filling 30.49/0.9359 34.08/0.9531 27.50/0.8823

CS-MRI 36.06/0.9806 41.68/0.9798 30.83/0.9177
DL-MRI 36.11/0.9814 39.82/0.9776 29.98/0.9029
BM3D-MRI 41.65/0.9814 — —
Wang’s 41.20/0.9804 41.49/0.9785 30.39/0.9148
PANO 45.83/0.9856 43.09/0.9836 32.99/0.9218
FDLCP 44.37/0.9845 41.71/0.9752 32.03/0.9166
KIKI-net 45.49/0.9901 43.07 /0.9830 35.32/0.9655

3 Zero filling 28.98/0.8913 29.58/0.9223 26.39/0.8566

CS-MRI 31.36/0.9514 34.17/0.9598 27.98/0.8836
DL-MRI 33.03/0.9550 36.53/0.9708 28.81/0.8878
BM3D-MRI 37.11/0.9677 — —
Wang’s 36.52/0.9623 38.44/0.9684 28.85/0.8865
PANO 38.17/0.9724 38.54/0.9695 30.59/0.9020
FDLCP 38.37/0.9744 38.25/0.9612 30.64/0.9068
KIKI-net 40.35/0.9833 39.88/0.9794 33.29/0.9479

4 Zero filling 26.74/0.8572 24.43/0.8749 23.62/0.8191

CS-MRI 27.54/0.9269 27.91/0.9165 25.01/0.8477
DL-MRI 32.06/0.9433 34.99/0.9593 25.62/0.8487
BM3D-MRI 34.62/0.9515 — —
Wang’s 33.84/0.9419 35.82/0.9577 24.84/0.8436
PANO 34.94/0.9554 36.04/0.9603 27.16/0.8803
FDLCP 35.28/0.9601 36.02/0.9586 26.78/0.8720
KIKI-net 36.50/0.9669 37.08/0.9720 31.60/0.9315

Note: PSNR, peak SNR; SSIM, structural similarity.
The highest PSNR and SSIM values are bold faced.
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FIGURE S1 Undersampling masks used in the present
study. Masks at R5 2 (A), R5 3 (B), and R5 4 (C) for
2563 256 images are shown
FIGURE S2 Reconstruction results of KIKI-net with vary-
ing noise conditions of training/testing data. From left to
right, fully sampled images, noisy fully sampled (label)
images, noisy zero-filling (input) images at R5 3, and the
output images of KIKI-net are shown. From top to bottom:
sigma values of Gaussian noise are 0, 0.01, and 0.04
FIGURE S3 Mean peak SNR (PSNR) versus sigma values
of white Gaussian noise for 3 different images. The PSNR
of noisy zero-filling (input) images at R5 3 (blue Xs),
noisy fully sampled images (red stars), and the output
images of KIKI-net (yellow circles) are shown
FIGURE S4 Reconstruction results of KIKI-net versus the
network depths: fully sampled image (A), zero-filling
image (B), image reconstructed with KIKI-net of 20-layer
(5 layers3 4) (C), 40-layer (10 layers3 4) (D), 60-layer
(15 layers3 4) (E), 80-layer (20 layers3 4) (F), and 100-
layer (25 layers3 4) (G). The PSNRs are represented at
the bottom right of each figure. H-N, Magnified images of
boxed regions of interest in (A) to (F)

FIGURE S5 Reconstruction results of KIKI-net versus the
number of channels for each filter: fully sampled image
(A), zero-filling image (B), image reconstructed with
KIKI-net of 8 filters (C), 16 filters (D), 32 filters (E), and
64 filters (F). The PSNRs are presented at the bottom right
of each figure. G-L, Magnified images of boxed regions of
interest in (A) to (F)
FIGURE S6 Reconstruction results from conventional
algorithms and KIKI-net at R5 2 undersampling (A1-Z1)
and R5 3 undersampling (A2-Z2) for the T2-FLAIR_-
ADNI data set: fully sampled image (A); zero-filling image
(B); image reconstructed with CS-MRI (C); image recon-
structed with DL-MRI (D); image reconstructed with
BM3D-MRI (E); image reconstructed with Wang’s algo-
rithm (F); image reconstructed with PANO (G); image
reconstructed with FDLCP (H); and image reconstructed
with our proposed algorithm, KIKI-net (I). J-R, Magnified
images for the dotted boxes in (A) to (I), respectively. S-Z,
Error maps of (J) to (R)
FIGURE S7 Reconstruction results from conventional
algorithms and KIKI-net at R5 2 undersampling (A1-W1)
and R5 4 undersampling (A2-W2) for the T1-weighte-
d_ours data set: fully sampled image (A); zero-filling
images (B); image reconstructed with CS-MRI (C); image
reconstructed with DL-MRI (D); image reconstructed with
Wang’s algorithm (E); image reconstructed with PANO
(F); image reconstructed with FDLCP (G); and image
reconstructed with our proposed algorithm, KIKI-net (H).
I-P, Magnified images for the dotted boxes in (A) to (H),
respectively. Q-W, Error maps of (I) to (P)
FIGURE S8 Reconstruction results from conventional
algorithms and KIKI-net at R5 2 undersampling (A1-W1)
and R5 3 undersampling (A2-W2) for the T2-FLAIR_ours
data set: fully sampled image (A); zero-filling image (B);
image reconstructed with CS-MRI (C); image reconstructed
with DL-MRI (D); image reconstructed with Wang’s algo-
rithm (E); image reconstructed with PANO (F); image
reconstructed with FDLCP (G); and image reconstructed
with our proposed algorithm, KIKI-net (H). I-P, Magnified
images for the dotted boxes in (A) to (H), respectively. Q-
W, Error maps of (I) to (P)
FIGURE S9 Reconstructed phase images from conven-
tional algorithms and KIKI-net at R5 2 undersampling
(A1-H1), R5 3 undersampling (A2-H2), and R5 4 under-
sampling (A3-H3) for the T1-weighted_ours data set: fully
sampled image (A); zero-filling image (B); image recon-
structed with CS-MRI (C); image reconstructed with DL-
MRI (D); image reconstructed with Wang’s algorithm (E);
image reconstructed with PANO (F); image reconstructed
with FDLCP (G); and image reconstructed with our pro-
posed algorithm, KIKI-net (H). The RMS error values are
presented in the right bottom of the corresponding images
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FIGURE S10 Reconstructed phase images from conven-
tional algorithms and KIKI-net at R5 2 undersampling
(A1-H1), R5 3 undersampling (A2-H2), and R5 4 under-
sampling (A3-H3) for the T2-FLAIR_ours data set: fully
sampled image (A); zero-filling image (B); image recon-
structed with CS-MRI (C); image reconstructed with DL-
MRI (D); image reconstructed with Wang’s algorithm
(E); image reconstructed with PANO (F); image recon-
structed with FDLCP (G); and image reconstructed with
our proposed algorithm, KIKI-net (H). The RMS error

values are presented in the right bottom of the corre-
sponding images
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